THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016 Problem Set 3: Sequences

1. Use the definition of the limit of a sequence to establish the following limits.

(a)
$$\lim_{n \to \infty} \frac{n}{n^2 + 1} = 0$$
,
(b) $\lim_{n \to \infty} \frac{2n}{n + 1} = 2$,
(c) $\lim_{n \to \infty} \frac{n^2 - 1}{2n^2 + 3} = 2$.

- 2. Let $\alpha \in \mathbb{R}$. Prove that $\lim_{n \to \infty} \frac{\alpha^n}{n!} = 0$.
- 3. Use the definition of the limit of a sequence to show that the following sequences diverge.

(a)
$$a_n = (-1)^n$$

- (b) $a_{2n} = 0$ and $a_{2n-1} = n$ for $n \in \mathbb{N}$
- 4. Give an example of two sequences $\{x_n\}$ and $\{y_n\}$ such that $\lim_{n \to \infty} x_n y_n$ exists, but both $\lim_{n \to \infty} x_n$ and $\lim_{n \to \infty} y_n$ do not exist.
- 5. Give an example of two sequences $\{x_n\}$ and $\{y_n\}$ such that $\lim_{n \to \infty} x_n y_n$ exists, but both $\lim_{n \to \infty} x_n$ and $\lim_{n \to \infty} y_n$ do not exist.
- 6. Prove that $\lim_{n \to \infty} x_n = 0$ if and only if $\lim_{n \to \infty} |x_n| = 0$. Give an example to show that the convergence of $\{|x_n|\}$ need not imply the convergence of $\{x_n\}$.
- 7. Prove that if $\lim_{n \to \infty} x_n = x > 0$, then there exists a natural number M such that $x_n > 0$ for all $n \ge M$.
- 8. (a) Suppose that $x_n > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = x$. Prove that $x \ge 0$. Give an example for x = 0.
 - (b) Let $\{a_n\}$ and $\{b_n\}$ be two sequences of real numbers such that $a_n > b_n$ for all $n \in \mathbb{N}$. Prove that $\lim_{n \to \infty} a_n \ge \lim_{n \to \infty} b_n$.
- 9. Suppose that $\{x_n\}$ is convergent sequence and $\{y_n\}$ is a sequence such that for any $\epsilon > 0$ there exists M > 0 such that $|x_n y_n| < \epsilon$ for all $n \ge M$. Does it follow that $\{y_n\}$ convergent?
- 10. (The convergence of Cesaro averages) Suppose that the sequence $\{a_n\}$ converges to a. Define the sequence $\{x_n\}$ by

$$x_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

for every natural number n. Prove that $\lim_{n \to 0} x_n = a$.

11. Suppose that the sequence $\{a_n\}$ converges to a and that |a| < 1. Prove that the sequence $\{(a_n)^n\}$ converges to 0.

- 12. (a) Let $\{x_n\}$ be a sequence of real numbers. Show that $\lim_{n \to \infty} x_n = 0$ if and only if $\lim_{n \to \infty} x_n^2 = 0$.
 - (b) Let $\{a_n\}$ and $\{b_n\}$ be two sequences of real numbers such that $\lim_{n \to \infty} a_n^2 + b_n^2 = 0$. Prove that $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$.
- 13. Define $a_1 = 1$ and for all $n \in \mathbb{N}$, define $a_{n+1} = \frac{1+a_n}{2+a_n}$. Prove that $\{a_n\}$ converges and find the limit.
- 14. Define $x_1 = 8$ and for all $n \in \mathbb{N}$, define $x_{n+1} = \frac{x_n}{2} + 2$. Prove that $\{a_n\}$ converges and find the limit.
- 15. Prove that the sequence

$$\left\{1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right\}$$

converges.

16. Let $\{b_n\}$ be a bounded sequence of nonnegative real numbers and r be a real number such that $0 \le r < 1$. Define

$$s_n = b_1 r + b_2 r^2 + \dots + b_n r^n$$

for every natural number n. Prove that $\{s_n\}$ converges.

- 17. Prove that $\{\sin n\}$ is divergent.
- 18. Give an example to show that the Bolzano-Weierstrass Theorem fails if boundedness assumption is dropped.
- 19. A set of real numbers K is said to be compact provided that every sequence in K has a subsequence that converges to a point in K. Suppose A is a subset of \mathbb{R} . Prove that A is compact if and only if A is closed and bounded.

(Remark: By the Bolzano-Weierstrass Theorem, [a, b] is a compact subset of \mathbb{R} .)

- 20. Suppose that $x_n \ge 0$ for all $n \in \mathbb{N}$ and that $\lim_{n \to \infty} (-1)^n x_n$ exists. Show that $\{x_n\}$ converges.
- 21. Show directly from the definition that the following are Cauchy sequences.

(a)
$$\frac{n+1}{n}$$
;
(b) $1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$.

- 22. Show directly that a bounded, increasing sequence is a Cauchy sequence.
- 23. If 0 < r < 1 and $|x_{n+1} x_n| < r^n$ for all $n \in \mathbb{N}$, show that $\{x_n\}$ is a Cauchy sequence.
- 24. A sequence $\{x_n\}$ is said to be **contractive** if there exists a constant C, 0 < C < 1, such that

$$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n|$$

for all $n \in \mathbb{N}$. Prove that every contractive sequence is a Cauchy sequence, and therefore is convergent.

25. For any $x \in \mathbb{R}$ and define $f_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$. Prove that for any fixed x, $\{f_n(x)\}$ is a Cauchy sequence, and therefore is convergent. (Remark: If $f : \mathbb{R} \to \mathbb{R}$ is a function defined by $f(x) = \lim_{n \to \infty} f_n(x)$, then f(x) in fact equals to e^x . We may use the similar idea to define $\cos x$ and $\sin x$.)